
Intelligent Systems Division
Manufacturing Engineering Laboratory

Embedded Real-Time Linux
for Cable Robot Control

Frederick M. Proctor
Group Leader, Control Systems Group

National Institute of Standards and Technology, USA

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Linux

• Linux is a Unix clone, written by Linus Torvalds at the
University of Helsinki
– begun in 1991, version 1.0 released in 1994
– full-featured Unix: protected mode, multiprocessing, multitasking,

virtual memory, shared libraries, networking
– available for 386 and higher processors, Compaq Alpha, Sun

SPARC, Motorola 68K and PowerPC, ARM, MIPS, more

• Linux source code is freely available as Open Source
under the Gnu General Public License

• Many companies sell pre-configured distributions: Red
Hat, Mandrake, Caldera, SuSE

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Embedded Linux

• Free and portable, Linux is popular for embedded systems
– highly customizable for minimal use of computing and power

resources
– ability to run from ROM, Flash with no rotating media

• Linux supports soft real-time execution
– tasks that can tolerate some variation in execution time
– no requirement for completion before a deadline

• Linux doesn’t support hard real-time execution
– optimized for best average response time
– can’t guarantee task execution by a deadline, even for interrupt-

based device drivers

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Real-Time Linux

• Changes to Linux scheduler for real-time operation are
available, and free
– RTL from New Mexico Tech: X86, PowerPC, Alpha
– RTAI from Milan Polytech: X86, PowerQUICC

• RTL and RTAI provide similar mechanism
– RT scheduler runs RT tasks first
– Linux is run as the last task, and is preempted for RT tasks
– RT layer captures and defers interrupts to Linux device drivers
– RT layer dispatches interrupts to RT device drivers as usual

• Your RT software is effectively a real-time device driver,
with shared memory or FIFO communication to non-real-
time Linux processes

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Embedded Linux Distributions

Dozens of embedded Linux
distributions are available

We selected BusyBox,
distributed free as open source

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Diskless Operation

• For applications that experience shock or vibration, solid-
state read-write media is a must. Some alternatives:
– Compact Flash, with built-in IDE interface for direct disk

replacement
– DiskOnChip, which requires newer Linux 2.4 kernel Memory

Technology Devices (MTD) subsystem, device drivers

• Write operations wear out Flash media
– “wear leveling” spreads out write operations transparently,

lengthening lifetime to hundreds of years for typical use
– achieved through either file system layer (e.g., Journaling Flash

File System (JFFS)) or on the chip itself (e.g., DiskOnChip
TrueFFS)

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Booting

• Booting from IDE-emulating Flash is automatic
– IDE interface makes Flash look like a normal disk

• Non-IDE flash requires additional software
– for DiskOnChip, doc-lilo is needed
– RAM disk image holds compressed Linux kernel and some boot

files; you create this off-line and load into Flash
– doc-lilo reads from Flash, loads RAM disk image, and booting

continues as usual

• Linux supports RAM disks for files that do not need to
persist between reboots, e.g., log files

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Booting

• For instant-on applications, PC BIOS self-test and generic
device initialization can be replaced with LinuxBIOS
– project originated at Los Alamos National Lab
– Linux boots from cold start to prompt in a few seconds
– requires a specific port of LinuxBIOS to your PC board

• For networked applications, Linux can be configured to
use BOOTP
– commonly used for rack-mounted clusters
– saves media cost, simplifies kernel upgrades

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Graphics support

• Linux typically uses the X Windows graphics system
– takes tens of megabytes of disk, megabytes of RAM

• Stripped-down alternatives exist
that still support mouse input and
multiple windows
– GGI, DinX
– MicroWindows/NanoX
– Qt/Embedded ⇒

• These use either video board-specific libraries, the SVGA
standard, or the newer Linux Frame Buffer abstraction
– the Frame Buffer has been ported to many modern boards, and

supports higher resolution, more colors

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Configuring Embedded RT Linux
• Set up a conventional development system with hard disk,

floppy, CD-ROM, etc. and RT Linux source code
– follow instructions provided with plain vanilla Linux, RT Linux

distributions
– build a bootable RT Linux kernel, including Memory Technology

Devices subsystem, Flash disk drivers
– build a bootable floppy with this kernel, additional floppies with

useful utilities

• Boot embedded system off the floppy
– use utility floppy to format flash disk, copy kernel and boot loader
– Copy your application code to Flash as it evolves

• Other options: development system = embedded system;
networked embedded system

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Cable Robots

• Stewart Platform parallel kinematic
mechanism turned upside-down

• Cables instead of linear actuators
• Quite stiff, and improves with loading
• Dual of serial kinematic mechanism:

inverse kinematics are closed form
(easy), forward kinematics are
iterative (hard)

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Our Computing Needs

• Solid-state media for shock- and vibration resistance
• Real-time control for Cartesian velocity teleoperation
• Bi-directional serial I/O to digital motor controllers
• Analog input, digital I/O to sensors and relays
• Our system:

– PC-104 with Pentium Geode processor
– BusyBox Linux, New Mexico Tech RTL
– DiskOnChip 96 Mb Flash
– Qt/Embedded, Touch screen w/ custom driver
– RS-232/422 serial; analog input, digital I/O
– Ethernet for development

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Cartesian Teleoperation

4-output
joystick

W = J-1 V

• Joystick outputs XYZ-Yaw velocities;
Roll and Pitch set to zero

• Controller transforms to cable velocities
using inverse Jacobian J-1

• Cable velocities sent to motor
controllers via RS-232,422 serial links

• Motor controllers reply with rotational
positions (⇒ cable lengths)

• Controller transforms to Cartesian
position using forward kinematics T

• Repeat next ∆t ...
• Note: J-1 is an instantaneous

relationship; for finite duration between
commands some roll and pitch
velocities will creep in

V

C = T Θ

WΘ

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Automatic Leveling

J-1

Vx

Vy

Vz

Vr

Vp

Vw

ω0

ω 1

ω 2

ω 3

ω 4

ω 5

T

θ0

θ 1

θ 2

θ 3

θ 4

θ 5

X

Y

Z

R

P

W

.

.

.
==

Synthetic leveling: roll and pitch
are computed from T;

Vr = -k Rcomputed ,
Vp = -k Pcomputed

Sensor leveling: sensor produces
outputs proportional to roll, pitch;

Vr = -k Rmeas ,
Vp = -k Pmeas

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Automatic Leveling

• Synthetic leveling:
– no need for separate sensor
– can’t compensate for cable sag, uncalibrated kinematics

• Sensor leveling:
– a true measure; compensates for cable sag, uncalibrated kinematics
– requires a separate sensor and associated computer inputs

• These can be combined to detect sag outside some
allowable range, or cable interference

• Both methods are closed-loop, and require tuning of gains
– simple proportional (P) control worked fine
– PID can clean up steady-state error, damp response

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Calibration and Homing
• Calibration of cable robots is difficult

– large structures present accessibility problems
– pulleys spread as the platform rises
– effective cable drum diameter changes as cable wraps up
– net result: accuracy on the order of centimeters over 10 meters
– during teleoperation, people will accommodate for this

• A homing procedure is necessary
– since the forward kinematics are iterative, we need a good estimate

of the initial Cartesian position for measured cable lengths
– from scratch, we define a Cartesian home position with respect to

world coordinates; run inverse kinematics to get cable lengths
– if the robot is not homed the cables must be jogged to their home

lengths, which should be marked for convenience
– during routine operation, we save Cartesian position to Flash at

shutdown and restore at startup, allowing power-down anywhere

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Summary

• Linux is a free operating system with embedded- and real-
time distributions, useful for research and commercial
applications

• Solid-state replacements for rotating disk storage protect
against shock and vibration, making robust systems

• Sophisticated graphical user interfaces can be built with
modest storage and memory requirements

• We built a cable robot controller using the PC-104 form
factor, DiskOnChip Flash media, and free software

• Cartesian teleoperation using non-trivial kinematics was
accomplished successfully

	Embedded Real-Time Linux for Cable Robot Control
	Linux
	Embedded Linux
	Real-Time Linux
	Embedded Linux Distributions
	Diskless Operation
	Booting
	Booting
	Graphics support
	Configuring Embedded RT Linux
	Cable Robots
	Our Computing Needs
	Cartesian Teleoperation
	Automatic Leveling
	Automatic Leveling
	Calibration and Homing
	Summary

